HORIBA
Search English
Global
  • Products
    • Automotive
    • Medical
    • Process and Environmental
    • Scientific and Analytical Instruments
    • Semiconductor
    • Water & Liquid
    • All products from A to Z
    • By Industry
      • Arts, Entertainment and Recreation
        • Art Conservation
        • Museums, Historical Sites and Similar Institutions
      • Education, R&D and Government Institutions
        • Universities
        • Research and Testing Laboratories
      • Energy and Environment
        • Why HORIBA
        • Hydrogen Energy
        • Energy Usage Optimization
        • Carbon Capture and Utilization
        • Battery
        • High efficiency of conventional energy sources and reduction of GHG emissions
      • Food and Beverage
        • Beverages
        • Food
      • Health Care
        • Biotechnology
        • HORIBA In Vitro Diagnostic solutions for human health care
        • Life Sciences
        • Pharmaceuticals and Medicine Manufacturing
      • Industrials
        • Building Products
        • Commercial and Professional Services
        • Electrical Equipment
        • Machinery
      • Information Technology
      • Materials
        • Chemicals
        • Chemical Manufacturing
        • Containers and Packaging
        • Nonferrous Metals
        • Nonmetallic Minerals
        • Paper, Forest Products and Manufacturing
        • Plastics and Rubber
        • Primary Metals
      • Mobility and Transportation
        • Automobiles and Components
        • Automotive Manufacturing
        • Other Transportation Equipment Manufacturing
      • Waste Management
        • Solid Waste Management and Remediation Services
        • Water Waste Management and Remediation Services
      • Water
    • By Technique
      • Atomic Spectroscopy
        • Energy Dispersive X-ray Fluorescence (ED-XRF)
        • Glow Discharge Optical Emission Spectrometry (GD-OES)
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Inorganic Elemental Analysis
        • Beta-ray Absorption Analyzer
      • Electrochemistry
        • Potentiometry based on Ion-Selective Electrode (ISE)
      • Life Science Techniques
        • Label-free Detection / Surface Plasmon Resonance Imaging (SPRi)
      • Mass Spectrometry
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • Quadrupole Mass Spectrometry
      • Material Characterization
        • Centrifugal Sedimentation
        • Colorimetry
        • Condensation Particle Counter (CPC)
        • Coriolis Flowmetry
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Magneto-pneumatic Analysis
        • Mechanical Flowmetry
        • Pressure-based Mass Flowmetry
        • Spectroscopic Ellipsometry
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
        • Fluid Measurement and Control
      • Molecular Spectroscopy
        • Absorption and Transmission Spectroscopy (UV, Visible, NIR)
        • Cathodoluminescence (CL, CLUE)
        • Chemiluminescence
        • Fluorescence Spectroscopy
        • Fourier-Transform Infrared Spectroscopy (FTIR)
        • Non-Dispersive Infrared Spectroscopy (NDIR)
        • Non-Dispersive Ultra Violet Spectroscopy (NDUV)
        • Photoluminescence (PL) & Electroluminescence (EL)
        • Quantum Cascade Laser (QCL) Spectroscopy
        • Raman Imaging and Spectroscopy
      • Radioactivity
        • Crystal Scintillation
      • Surface Science Techniques
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • AFM-Raman (co-localized measurements & TERS)
  • Applications
    • Arts, Entertainment and Recreation
      • Art Conservation
      • Museums, Historical Sites and Similar Institutions
    • Cosmetics
    • Education, R&D and Government Institutions
      • Universities
      • Research and Testing Laboratories
    • Energy and Environment
      • Why HORIBA
      • Hydrogen Energy
        • Global Initiatives
        • Global Trends and Strategies toward Carbon Neutrality
        • Fuel Cell Evaluation
        • FCV Evaluation
        • Stationary Fuel Cells
        • Evaluation of Hydrogen and Ammonia Engine / Gas Turbine for Power Generation
        • Hydrogen Station Evaluation
        • Water Electrolysis Evaluation
        • Hydrogen Production Evaluation
      • Energy Usage Optimization
        • Energy Management System
        • Environmental Impact Assessment (LCA and GHG Protocol)
        • Battery Manufacturing/Recycling
      • Carbon Capture and Utilization
        • Reduce
        • Direct Carbon Capture
        • Carbon Recycling
      • Coal and Consumable Fuels
      • Electric Utilities
      • Energy Fuel Oil
      • Environmental Countermeasures
      • Petroleum and Coal Products Manufacturing
        • Petrochemicals
      • Photovoltaics
      • Oil and Gas
      • RoHS and ELV
    • Food and Beverage
      • Agriculture & Crop Science
      • Beverages
      • Food
      • Food & Beverage Manufacturing
    • Industrials
      • Battery
      • Commercial and Professional Services
        • Gas mass flow control and measurement for reference value of PM2.5 measurement
      • Construction & Engineering
      • Electrical Equipment
      • Machinery
    • Information Technology
      • Semiconductors
        • 2D Materials
        • Graphene
        • Photovoltaics
        • Display Technologies
        • Data Storage
        • Nanomaterials
      • Semiconductor Manufacturing Process
      • Technology Hardware and Equipment
    • Life Science
      • Biopharma and Pharma
        • Drug Development and Formulation
        • Process Development and Quality
        • PAT Solutions
        • Small Molecule Drugs
        • Protein Analysis
        • Cell Culture
        • New Modality
        • Microbial Testing
        • Low Molecular Drugs
      • Biotechnology and Biomedical
      • Cosmetics
      • Food and Beverage
    • Materials
      • Carbon
      • Polymers and Composites
      • Raw Materials for Semiconductors
      • Ceramics
      • Chemicals
      • Chemical Manufacturing
      • Construction Materials
      • Containers and Packaging
      • Metal Powder
      • Nonferrous Metals
      • Nonmetallic Minerals
      • Paper, Forest Products and Manufacturing
      • Primary Metals
      • Material Research
      • Photovoltaics
      • Forensics
      • Metal and Mining
    • Medical Diagnostics
    • Mobility and Transportation
      • Automotive Manufacturing
      • Engine, Turbine and Power Transmission Equipment Manufacturing
      • Real Driving Emissions
      • Intelligent Lab
      • Marine
    • Waste Management
      • Solid Waste Management and Remediation Services
      • Water Waste Management and Remediation Services
        • Waste Water and Soil Analysis
        • Waste Water Treatment and Disposal
      • Plastic Waste
    • Water
      • Drinking Water Utilities
      • Water Reuse
        • Water Testing
  • Technology
    • Elemental Analysis
      • Energy Dispersive X-ray Fluorescence (ED-XRF)
        • What is X-ray Fluorescence (XRF)?
        • What is X-ray Fluorescence Spectroscopy (micro-XRF)?
        • XRF Key Components
        • XRF Analysis
        • XRF Articles
        • HORIBA XRF Analyzers
      • Glow Discharge Optical Emission Spectroscopy
        • Glow Discharge Optical Emission Spectroscopy
        • Sample Measurement with GDOES
        • Sample Test and Analysis
        • Comparison with Other Techniques: Surface Analysis
        • Comparison with Other Techniques: Bulk Analysis
        • Instrument Introduction
        • Benefits and Features of Pulsed RF GDOES
        • Join the GD Community
        • Bibliography
      • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Scientific ICP Spectrometers
        • Applications for ICP-OES
        • ICP-OES and other techniques
        • Principles and Theory
        • Instrumentation
        • Excitation Source
        • Dispersive System
        • Detection Systems Used with ICP-OES
        • Performances in ICP-OES
      • Carbon/Sulfur & Oxygen/Nitrogen/Hydrogen Analysis
    • Health Care
      • Multi Distribution Sampling System (MDSS)
      • Reticulocytes Analysis
      • CBC + CRP
      • Slide Production
      • Automatic Rerun
      • Absorbance
      • Fluorescence
      • Flow cytometry
      • Impedance / Resistivity
      • Sedimentation
      • Spectrophotometry
      • Potentiometry
      • INR screening
      • Clotting
      • Turbidimetric
      • Chromogenic
    • Particle Analysis
      • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
      • Molecular Weight
      • Nanoparticle Tracking Analysis
      • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
      • Zeta Potential
      • Centrifugal Sedimentation
    • Fluid Control
      • Vaporization of Critical Process Chemistries
      • Coriolis Flowmetry
      • Thermal Mass Flowmetry
    • Mass Spectrometry
      • Quadrupole Mass Spectrometry
    • Microscopy and Imaging
      • AFM-Raman
        • AFM-Raman
        • What is Tip Enhanced Raman Spectroscopy?
        • What information does TERS provide?
        • How does enhancement of the Raman signal occur in TERS?
        • What are the TERS instrumental configurations?
        • What are the TERS tips materials and morphology?
        • What kind of substrates can be probed with TERS?
        • What is the SPM feedback used for TERS?
        • What is the spatial resolution of TERS?
        • What is the definition of TERS Enhancement factor?
        • What is nonlinear TERS?
        • What are the degradation issues and artifacts in TERS?
        • What are the main TERS applications in Materials Sciences?
        • What are the main Life Sciences TERS applications?
        • References
        • Products
      • Atomic Force Microscopy [AFM]
      • Cathodoluminescence
      • Image Analysis of Particles
      • Micro X-ray Fluorescence
      • Raman Microscopy
    • Physisorption
      • Surface Area
    • Spectroscopy
      • Cathodoluminescence Spectroscopy
        • Cathodoluminescence Spectroscopy
        • Electron Microscope
        • SEM, ESEM, SEM-FIB, (S)TEM
        • EM Add-on detector
        • SEM-Cathodoluminescence (SEM-CL)
      • AFM-Raman
      • Detectors
        • Detectors
        • What is a CCD Detector?
        • What is an EMCCD Detector?
        • How to Select a CCD Camera for Spectroscopic Applications
        • Wavelength and Pixel Position
        • Spectroscopy Detector Products
        • Scientific CCD Camera Products
      • 50 years of Diffraction Gratings
      • Diffraction Gratings Ruled and Holographic
      • Fluorescence Spectroscopy
        • Fluorescence Spectroscopy
        • Principles and Theory of Fluorescence Spectroscopy
        • What is the Jablonski Diagram?
        • What is a Fluorescence Measurement?
        • Steady State Fluorescence Techniques
        • What is Fluorescence Anisotropy or Fluorescence Polarization?
        • What are Luminescence Quantum Yields?
        • What is Ratiometric Fluorescence?
        • What is an Excitation Emission Matrix (EEM)?
        • What is A-TEEM spectroscopy?
        • What is Singlet Oxygen?
        • How to Calculate Signal to Noise Ratio
        • Fluorescence Lifetime Techniques
        • Products Using Fluorescence Spectroscopy
      • Quantum Cascade Laser (QCL) Spectroscopy
        • Optical Hardware
        • Concentration Calculation Algorithm
        • Application Fields
      • Raman Imaging and Spectroscopy
        • Raman Spectroscopy
        • History of Raman Spectroscopy
        • Application field
        • Comparison with other techniques
        • Raman analysis
        • Recording spectral images and profiles
        • Description: Combined/hybrid/hyphenated Raman system
        • Confocal Raman microscopy
        • Raman Spectrometer Presentation
        • How the technique is used
        • Raman Image Gallery
        • Related Products
      • Spectrometers and Monochromators
        • Monochromator System Optics
        • Bandpass and Resolution
        • Order, Resolution, and Dispersion
        • Choosing a Monochromator/ Spectrograph
        • Spectrometer Throughput and Etendue
        • Optical Signal to Noise Ratio and Stray Light
        • Entrance Optics
        • Spectrometer, Spectrograph and Monochromator Products
      • Spectroscopic Ellipsometry
        • Spectroscopic Ellipsometry
        • Advantages
        • Instrumentation
        • Measurement Techniques
        • Data Analysis
        • Cauchy dispersion module
        • Products
      • Vacuum Ultra Violet Spectroscopy
        • Vacuum Ultra Violet Spectroscopy
        • VUV technology
        • High Vacuum (HV), Ultra High Vacuum (UHV), gas purge
        • Light sources in VUV
        • VUV system: Detector
        • Aberration
        • References - Articles
      • X-ray Fluorescence
    • Surface Plasmon Resonance
      • Surface Plasmon Resonance imaging
        • Surface Plasmon Resonance Imaging (SPRi)
        • Brief History of the Technique
        • SPR Measurements, Application Field and Comparison with Other Techniques
        • The Basics of Label-free Biomolecular Interactions
        • Instrument Presentation
        • How SPRi is Used
        • Key Accessories. Sensorchips. Surface Chemistry
        • How are the Molecules Immobilized on the biochip?
        • Conclusion & Bibliography
  • Service
    • Analysis Services
      • Analysis Centers and Services
      • EMC Analysis Service
    • Calibration and Certification
      • Calibration Centers
    • Customer Support
      • HORIBA Medical Documentation Database
      • Medical Customer Support
      • On-Site Support
      • Software Upgrades
      • STARS Helpdesk
    • Maintenance
      • Dynamometer and Other Overhaul Services
      • Periodic Maintenance
    • Spare Parts and Consumables
    • Testing and Consulting
      • Automotive Testing Centers
    • Training
      • Product Training
        • Scientific Product Training
        • Automotive Product Training
        • Medical Product Training
      • Technology Training
  • Company
    • About HORIBA
      • Home
      • Message
      • Company Profile
      • Corporate Philosophy
      • Our Future (Vision, Mission, Values)
      • Corporate Governance
      • Board of Directors
      • Culture
      • History
        • 1945–1960s
        • 1970s
        • 1980s
        • 1990s
        • 2000s
        • 2010s
        • 2020s
      • HORIBA Report
      • Technical Journal "Readout"
        • Readout No. E58 - Analysis and Measurement Technologies that Contribute to the Development of Next Generation Semiconductor Devices
        • Readout No. E57 - HORIBA’s Initiatives in the Next-Generation Energy and Environment Fields
        • Readout No. E56 - Analytical Solutions in Megatrends
        • Readout No. E55 - 2021 Masao Horiba Awards - Spectroscopic analysis and measurement technology in the life science field
        • Readout No. E54 - Microplastics and Nanoplastics: Analysis and Method Development
        • Masao Horiba Awards Research Articles
        • Readout No. E53 - 2019 Masao Horiba Awards - Advanced Analytical and Measurement Technologies for Efficient Control System to Maximize the Performance of Electric Power and Batteries Usage
        • Readout No. E52 - Green Innovation for Marine Shipping Industry
        • Readout No. E51 - 2018 Masao Horiba Awards Advanced analytical and measurement technologies in semiconductor manufacturing processes
        • Readout No. E50 - Low-Carbon Society and Environmental Improvement
        • Readout No. E49 - Photonic Instrumentation in Life Science
        • Readout No. E48 - Water Measurement Experts
        • Readout No. E47 - Application for Semiconductor Manufacturing Process
        • Readout No. E46 - New Development for Automotive Test Systems
        • Readout No. E45 - Application Technology in Analysis
        • Readout No. E44 - Contribution of Diagnostics to Total Medical Care/Healthcare
        • Readout No. E43 - Watching the Environmental and Society with Measurements
        • Readout No. E42 - More Efficient Testing on Automotive Development, Improving the Accuracy of Fuel Consumption Measurement
        • Readout No. E41 - Application
        • Readout No. E40 - Application
        • Readout No. E18 - EUROPE
        • Readout No. E17 - AMERICA
        • Readout No. E16 - Chinese (Asia)
        • Readout No. E15 - Technologies for HORIBA STEC
        • Readout No. E14 - Masao HORIBA Awards"Measurement of Bioparticles" and "Measurement of Internal Combustion"
        • Readout No. E13 - Technologies for Automotive Testing
        • Readout No. E12 - Masao Horiba Awards "X-ray Analysis Technology"
        • Readout No. E11 - The Second Masao Horiba Awards
        • Readout No. E10 - Environmental Analysis Technologies for the Management of Global Environment and the Development of Industry
        • Readout No. E09 - The First Dr.Masao Horiba's Award and the 50th Anniversary Products
        • Readout No. E08 - Products and Technologies of HORIBA ABX
        • Readout No. E07 - Products and Technologies of Jobin Yvon HORIBA Group
        • Readout No. E06 - 50th Anniversary of HORIBA, Ltd. Products and Technology of HORIBA Group
        • Readout No. E05 - Semiconductor Instruments
        • Readout No. E04 - Hematology Instruments
        • Readout No. E03 - Paticulate Matter
        • Readout No. E02 - The Technology Alliance for X-ray Analysis
        • Readout No. E01 - the Analysis of the Global Environment
      • Group Companies
      • Virtual Patent Marking
    • Events
    • Career
    • Investor Relations
      • Home
      • Investor Relations News
      • IR Library
        • Financial Statements
        • Presentation Materials
        • HORIBA Report
      • Message from the CEO
      • Mid-Long Term Management Plan
      • Stock Information
      • Shareholders Meeting
      • Other IR Information
        • Investor Relations Calendar
        • Disclaimer
      • Investor Relations Contact
    • News
    • Social Responsibility
      • Home
      • Message
      • HORIBA's CSR
        • CSR Related Policy and Promotion System
        • Code of Ethics
        • UN Global Compact
        • HORIBA and the SDGs
        • Integrated Management System
      • Environment
        • Environmental Performance Indices
        • Eco-Friendly Products
        • Actions for RoHS Directive, REACH Regulation and GHS Regulations
      • Social
        • Home
        • Quality
        • Occupational safety and health
        • Promotion of Diversity
        • Material Procurement
        • Social Activities
      • Governance
        • Corporate Governance
        • Internal Controls
        • Compliance Promotion Systems
        • Risk Management
      • HORIBA Special Contents
      • Library
        • Back number of CSR Reports
      • HORIBA Group Social Media
        • Social Media Registered Accounts
        • HORIBA Group Social Media Policy
        • HORIBA Group Terms of Use for Social Media
  • Contact
    • Contact Form
    • Worldwide Locations

Investor Relations open open
  • Home
  • Investor Relations News
  • IR Library
  • Message from the CEO
  • Mid-Long Term Management Plan
  • Stock Information
  • Shareholders Meeting
  • Other IR Information
  • Investor Relations Contact
    Company » Investor Relations » Message from the CEO

Message from the CEO

Strive to reach the next stage through “HONMAMON*” technologies and people in the changing world

The success of global collaboration within HORIBA in 2022 resulted to achieve significant growth. Now, HORIBA has the challenge of rapidly progressing to the next stage in sight. We will not fail to seize this opportunity to work toward further enhancing our corporate value.

*HONMAMON: HONMAMON is a Japanese word, used especially often in KYOTO, where HORIBA is located. The word describes authenticity and excellence.

A year in which HORIBA demonstrated its strengths leading to significant results

2022 turned out to be a year of increasing instability in international politics and social conditions. This was triggered by Russia’s invasion of Ukraine, accelerating global inflation that included soaring energy prices, and the depreciation of the yen. HORIBA’s business was also affected by procurement prices and delays in parts and materials such as electronic components.  

However, even under these challenging conditions, HORIBA posted record highs in sales, operating income, ordinary income, and net income attributable to owners of parent (net income) for the fiscal year ended in December 2022. Thus, we secured an operating profit margin of 17.0% (up 2.7 percentage points year-on-year).

We saw a significant increase in semiconductor segment sales due to a booming semiconductor market, as well as increased revenue and profits in the Process & Environmental and Scientific segments. As a result, we achieved the targets for operating income and net income set forth in our Mid-Long Term Management Plan, MLMAP2023 a year ahead of schedule. We were only able to achieve this level of performance among worldwide difficulties because our group companies in Japan and overseas collaborated globally to increase supply capacity and accordingly to minimize the impact on customers. I believe this is one of our major achievements in 2022.

HORIBA’s strengths include comprehensive capabilities and agility

Since our founding HORIBA has been proud to be a R&D-oriented company committed to nurturing HONMAMON technologies. As for our global growth, we have also focused on linking functions such as production, sales, and management in a well-balanced manner and on a global scale. I also believe that HORIBA’s strength lies in its comprehensive capabilities which allow us to organically integrate various functions and flexibly handle diverse customers and markets.

To improve the comprehensive capabilities of a company, it is vital to maintain close collaborative relationships with suppliers. We have built strong relationships of trust by treating HORIBA’s suppliers not simply as vendors, but collaborating with them as partner companies. We take the time to continually communicate with partner companies and always consider mutually beneficial methods and measures. Thanks to this, shipments to HORIBA from partner companies have rarely been delayed, even when the impacts of business cycles have made procurement difficult. We always collaborate closely with partner companies on technology as well. This includes adopting an approach where we create basic technologies in-house, then outsource design and production to trusted partner companies. We increase our comprehensive capabilities by valuing mutual trust and constant communication based on HONMAMON technologies. I want us to continue to be a company that can flexibly meet the customer expectations.

HORIBA has made its presence known through high-end analysis and measurement equipment used primarily in research and development. At the same time, we have expanded our business portfolio and gained opportunities for significant growth by applying our technologies in different fields.

We are also starting to see new business opportunities for industrial applications in Bio & Healthcare, which is one of the focus areas identified in MLMAP2023. HORIBA has more than 30 years’ experience in the medical business centered around the sale of hematology analyzers. In recent years, we have expanded into the field of Life Science by uniting this with scientific analysis equipment technology. We are also cultivating human assets who will lead development of cutting-edge technology, and have high expectations for future growth.

The timing of investment is momentary, affinity with the corporate culture is the key to success

Since the late 1990s, HORIBA has grown by actively accepting attractive technologies or companies with superior technical prowess into the group through investment, including corporate acquisitions. In the future, such strategic investments will become increasingly important. We will develop our business in several fields without being partial to any single business, and continue to generate cash even in the midst of economic ups and downs. The solid financial foundation that HORIBA has built up so far will definitively become a major strength.

I also believe that, rather than things like performance that are easy to evaluate, the most important aspects in assessing a company are its invisible corporate culture and values. One of the things that makes a corporate acquisition successful is understanding of and affinity for one another’s corporate culture. HORIBA has grown through mergers and acquisitions by not missing the chance to seize opportunities that present themselves from time to time. Jobin Yvon (current HORIBA FRANCE SAS) is a prestigious company in the field of optical spectroscopy that joined HORIBA in 1997. It boasts a history longer than HORIBA’s, stretching back 200 years. In this way companies from around the world, with excellent technologies and histories, are breathing new life into HORIBA and adding value to the entire group.

Weaving together diverse human assets and technologies

–Unfading value like Kumihimo*1–

HORIBA celebrated its 70th anniversary in 2023. In January, approximately 2,700 HORIBARIANs*2 mainly in Japan, out of the roughly 8,500 employees at our group companies, gathered under one roof for a commemorative ceremony. Many representatives from overseas group companies participated as well to celebrate the 70th anniversary with us.

The commemorative ceremony was planned and run entirely by HORIBARIANs, mainly younger members. I’m sure that planning an event for thousands of people and incorporating fresh ideas on their own was an invaluable experience for the HORIBARIANs involved. Also, when considering the future of the company, it is not possible to envision the future simply by extrapolating from our present state. A new dimension of thinking is required. Gaining knowledge is important, but being creative even more so. We have been planning and carrying out various events, including anniversaries, on our own since our company’s foundation. We believe it contributes to human asset development by providing opportunities for HORIBARIANs to build flexible creativity. 

At HORIBA, we view our employees as valuable assets. That is why we use the words “human assets” rather than “human resources”. However, a company that relies on just one person or a few people with exceptional abilities as its human assets cannot grow. Diverse and unique HORIBARIANs working together as a team is what produces great results.

Weaving together diverse human assets and HONMAMON technologies, like the braided cords that are a part of traditional Japanese crafts, has enabled HORIBA to develop numerous products and services. As we pursue cutting-edge technologies, we aim to be a company that creates value like that of traditional crafts—value which does not fade even after many years. We look forward to your continued understanding and support in 2023.

 

*1 Kumihimo: Kumihimo is traditional Japanese braiding using cords. The braiding technique has been used in Japan for over 1,300 years and its uses range from kimonos to modern fashion and accessories.

*2 HORIBARIANs: All HORIBA workers are regarded as family and called HORIBARIAN as a nickname.


May 2023
Atsushi Horiba

Chairman & Group CEO

  • Products
    • By Products (A-Z)
    • Automotive
    • Medical
    • Process and Environment
    • Scientific
    • Semiconductor
  • Applications
    • Drinking Water Utilities
    • Automotive Manufacturing
    • Semiconductor Manufacturing Process
    • Research and Testing Laboratories
  • Technology
    • Glow Discharge Spectroscopy
    • Pressure-based Flowmetry
    • Quadrupole Mass Spectrometry
    • Raman Spectroscopy
  • Service
    • On-Site Support
    • Spare Parts and Consumables
  • Company
    • News
    • Events
    • Career
    • History
    • Corporate Culture
  • Contact
    • Career Contact
    • Contact Form
    • Worldwide Locations
    • Investor Relations Contact

Terms and Conditions Privacy Notice Cookies